

Proof of Concept Bio-Terrace Aluminum Removal at an Abandoned Metal Mine, Idaho

Jim Gusek, P.E., Sovereign Consulting Inc. David Jenkins and Christopher McCormack, ECM Consulting Inc. and Joseph Larson, US Bureau of Land Management

Outline

- Moran Tunnel Site Introduction
- Passive Treatment 101 "It's not a constructed wetland"
- Iron Terraces Mother Nature @Work
- Aluminum Removal Mechanisms
- Proof of Concept Test Results
- Path Forward

Moran Tunnel Site, Idaho

Moran Tunnel Site

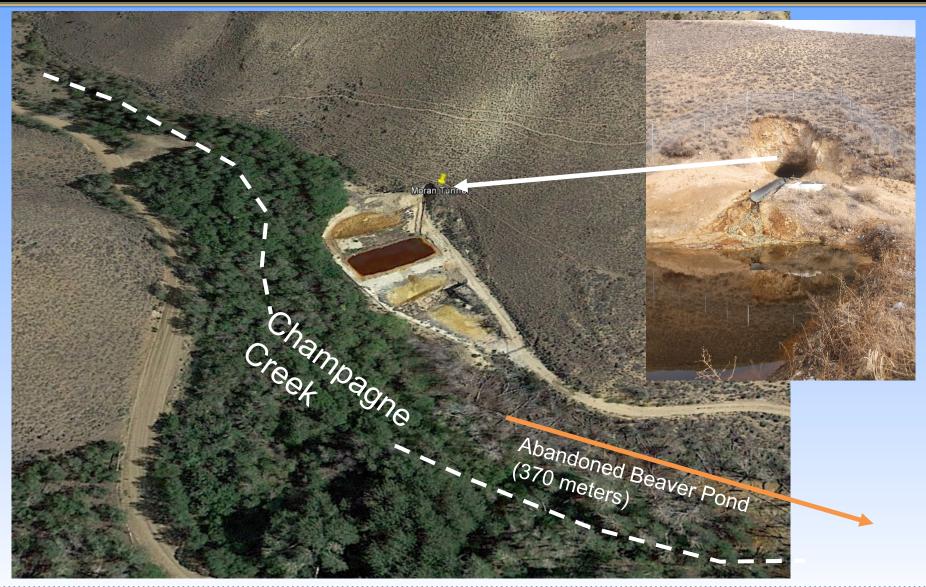
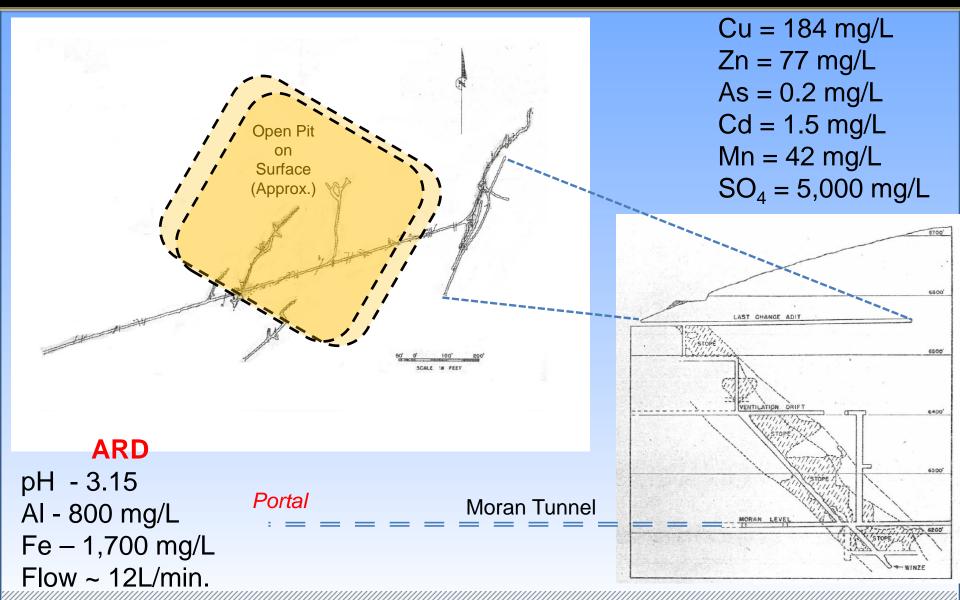


Image Courtesy Google Earth

Moran Tunnel Site - November 2013

Cyanobacteria/Algae

More than a


century ago,

SOVEREIGN CONSULTING INC.

Moran Tunnel & Last Chance Mine

Passive Treatment of Mining Influenced Water (MIW) involves the:

- **S**equential
- Ecological
- eXtraction

Of metals in a man-made but naturalistic bio-system

P.T. Metal Removal Mechanisms

- Sulfide and carbonate precipitation via sulfate reducing bacteria, et al.
- Hydroxide and oxide precipitation by *thiobacillus ferro-oxidans* bacteria, *et al.*
- Filtering of suspended materials and precips
- Carbonate dissolution/replacement
- Metal uptake into live roots, stems and leaves
- Adsorption and exchange with plant, soil and other biological materials

Major

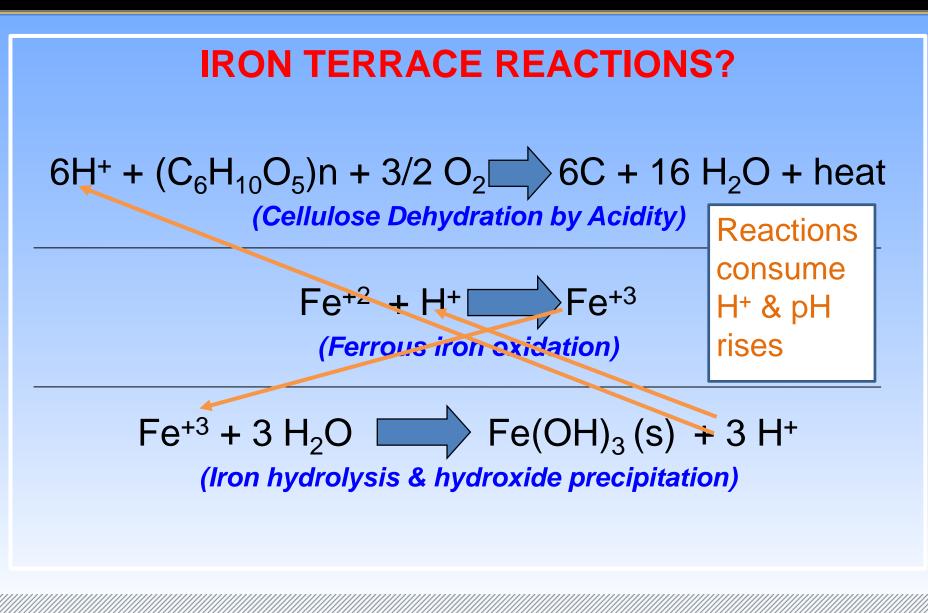
Iron Terraces – Coast to Coast (USA): Mother Nature at Work

Some ferricrete deposits in the Animas Basin, Colorado are 9,000 years old!

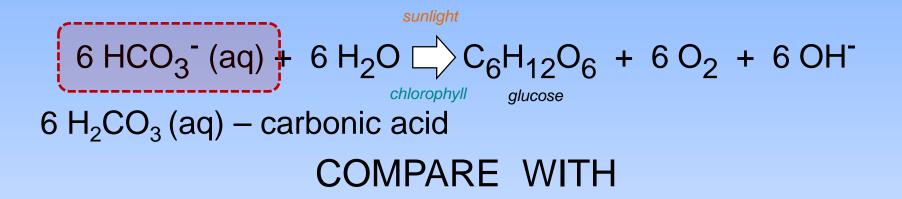
Canterbury Coal Mine, PA

Fe⁺², Forest Litter & Algae, the Common Denominators

Aluminum? Deposition @ Red & Bonita Mine, CO


Passive Treatment Chemistry 101

$$SO_{4}^{-2} + 2 CH_{2}O + HS^{+} + 2HCO_{3}^{-} + H^{+}$$
REDUCING/
ANAEROBIC (Sulfate reduction and neutralization by bacteria)
CONDITIONS (Sulfate reduction and neutralization by bacteria)
Zn⁺² + HS⁻ ZnS (s) + H⁺
(Sulfide precipitation)
OXIDIZING Fe⁺³ + 3 H₂O Fe(OH)₃ (s) + 3 H⁺
(Hydroxide precipitation)
CALL
CONDITIONS H⁺ + CaCO₃ Ca⁺² + HCO₃⁻
(Limestone dissolution)



Cyanobacteria/Algae Can Raise pH

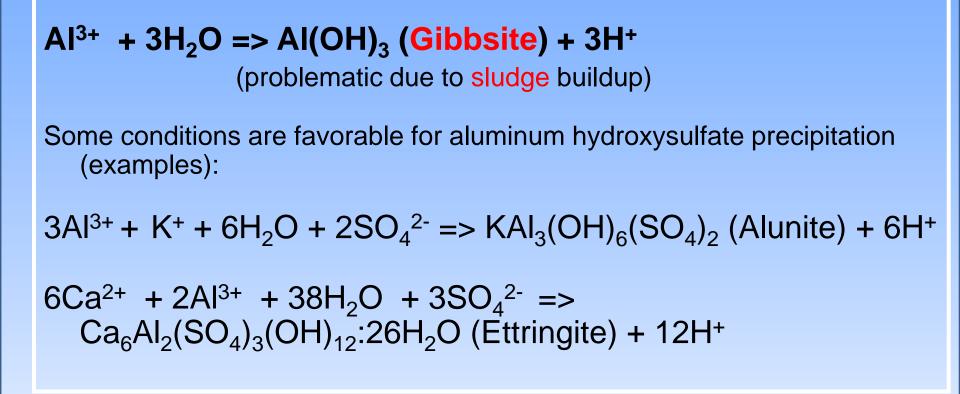
PHOTOSYNTHESIS IS AN IMPORTANT PROCESS FOR INCREASING pH

$$6 \text{ CO}_2 (g) + 6 \text{ H}_2 O \bigoplus_{\substack{chlorophyll\\glucose}} C_6 \text{H}_{12} O_6 + 6 O_2$$

Ref: T. Wildeman, 2005

SOVEREIGN CONSULTING INC

Cellulose Dehydration by Acidity

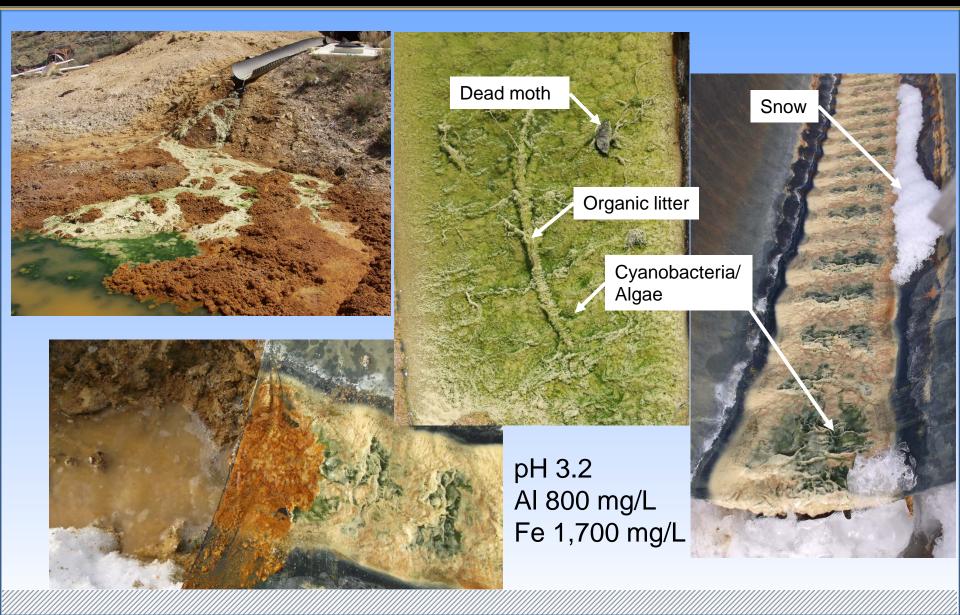

$6H^+ + (C_6H_{10}O_5)n + 3/2 O_2 \implies 6C + 16 H_2O + heat$

Aluminum Behavior

Thomas, R.C. 2002. *Passive Treatment of Low pH, Ferric Iron-Dominated Acid Rock Drainage*. Doctoral Thesis. University of Georgia.

Other Aluminum Possibilities

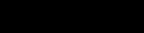
- Hydrobasaluminite $AI_4(SO_4)(OH)_{10}$ •12-36(H₂O)
- Basaluminite $AI_4(SO_4)(OH)_{10}$ •5(H₂O)
- Aluminite $Al_2(SO_4)(OH)_4 \bullet 7(H_2O)$
- Kaolinite Al₂Si₂O₅(OH)₄
- Silvialite (Ca,Na)₄Al₆Si₆O₂₄(SO₄,CO₃)


Ratio of aluminum to sulfate varies from 6 AI to 1 SO₄ (Silvialite) to 0.67 AI to 1 SO₄ (Ettringite)

Aluminum Terrace Deposition @ Moran Tunnel, Idaho

Analysis of Existing Precipitates

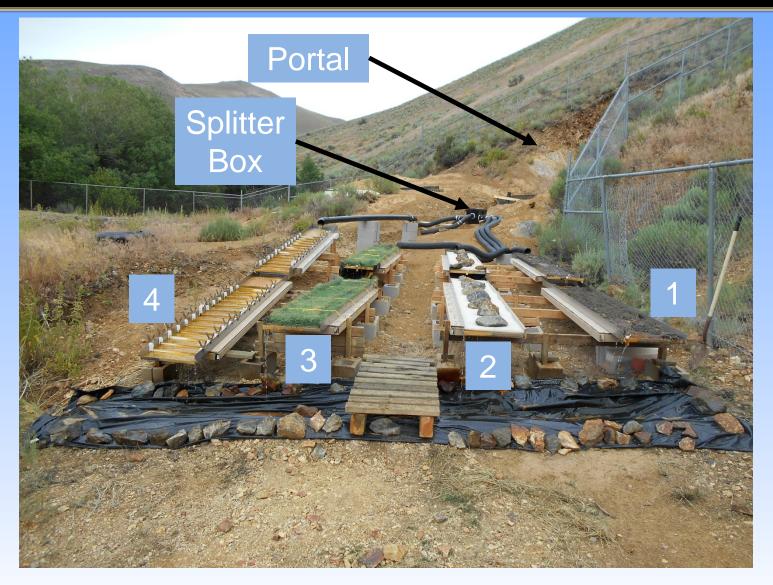
Sampling Location		PORT	FAL	CREEK		BEAVER	POND	
Parameter	Units	Value	Moles/ Kg	Value	Moles/ Kg	Value	Moles/ Kg	
Sulfate	mg/kg	16,000	0.17	15,000	0.16	160,000	1.67	j
Phosphate as P	mg/kg	1.1		1.3		3.5		
Total Solids	%	36.7		22.9		27.6		
Aluminum	mg/kg	5,400	0.20	2,400	0.09	4,300	0.16	
Calcium	mg/kg	790	0.02	1,500	0.04	58,000	1.45	Ì
Copper	mg/kg	300	0.00	280	0.00	1,300	0.02	
Iron	mg/kg	140,000	2.51	190,000	3.40	3,100	0.06	
Lead	mg/kg	3.3	0.000	5.2	0.000	2.9	0.000	
Magnesium	mg/kg	440	0.02	610	0.03	13,000	0.53	
Manganese	mg/kg	120	0.002	130	0.002	1,600	0.03	
Silicon	mg/kg	2,000	0.07	660	0.02	4,300	0.15	
Silver	mg/kg	<14.		<22.		<3.6		


Spec. Gravity Solids 1.7 to 2.3

Passive Treatment Staged Design Phases

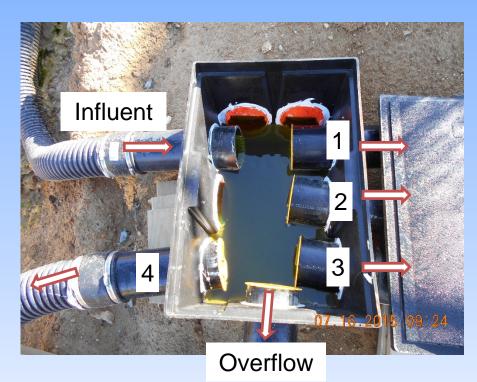
- Lab (proof of concept) tests
- Bench tests
- Pilot tests
- Limited full scale (modules)
- Full scale implementation

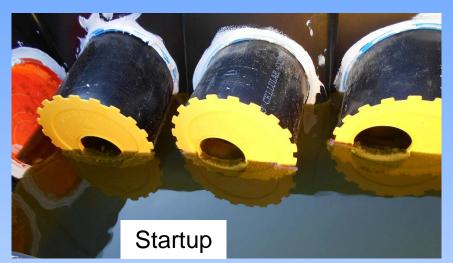
Sovereign Consulting Inc

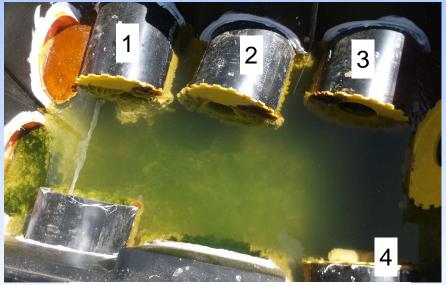

Four troughs, 6.1 meters long, 46 cm wide (2.8 m²), each receiving about 2.8 liters/min

- Trough 1 High Organic Shredded willows, three layers of jute matting (erosion control mat); *slope: 0% to* 2%
- Trough 2 Non-Organic Inert biomat filter media; slope: 0% to 2%
- Trough 3 Anoxic Native soil & manure (50-50) covered with coconut coir erosion control mat; *slope:* 0% to 1% (flat)
- Trough 4 Oxygenated Inert (glass) aquarium media with plastic ledges/terraces; *slope: 3% to 7%*

Test Duration: 56 days







Four troughs receiving about 4 liters/min. each

Adjustable flow splitter box for septic systems

Decommissioning – Day 56

See Dave Jenkins paper, ASMR Session 6A Meeting Room 1 Wednesday, June 8 4:00 to 4:30p

POC Results – pH & Flow

Field pH									
Date	Week	Influent	Trough 1	Trough 2	Trough 3	Trough 4			
6/24/2015	0	3.6							
6/27/2015	0	3.2	3.33	3.30	3.33	3.23			
7/6/2015	1	3.47	3.45	3.51	3.5	3.44			
7/16/2015	3	3.46	3.37	3.43	3.45	3.43			
7/30/2015	5	3.76	3.14	3.18	3.15	3.22			
8/6/2015	6	3.25	3.34	3.34	3.3	3.3			
8/20/2015	8	3.38	3.36	2.95	2.85	3.34			

Flow Rate Liters/min										
Date	Week	Influent	Trough 1	Trough 2	Trough 3	Trough 4				
6/24/2015	0	9.5								
6/27/2015	0		1.4	2.8	2.8	2.4				
7/6/2015	1		1.3	2.7	2.6	2.7				
7/16/2015	3	9.5	1.3	2.8	2.3	3.3				
7/30/2015	5	10.0	3.4	1.2	2.2	1.7				
8/6/2015	6	10.0	2.6	2.3	1.6	2.3				
8/20/2015	8	9.9	3.4	0.1	0.03	4.2				

Results - Iron

Dissolved Fe (mg/L)						
Date	Week	Influent	Trough 1	Trough 2	Trough 3	Trough 4
6/26/2015	0	1730	Organic	Non-Organic	Anoxic	Oxygenated
7/2/2015	1					
7/16/2015	3		1510	1380	1360	1430
7/30/2015	5	1770	1730	1760	1830	1750
8/6/2015	6	1700	1880	1880	1760	1770
8/20/2015	8	1650	1770	1590	1170	1750
3/20/2015 Dup						
Average		1712.5	1678.0	1652.5	1530.0	1675.0
			Total Fe (mg	µ/L)		
Date	Week	Influent	Trough 1	Trough 2	Trough 3	Trough 4
6/26/2015	0	1700				
7/2/2015	1					
7/16/2015	3		1810	1760	1760	1790
7/30/2015	5	1750	1800	1690	1770	1770
8/6/2015	6	1780	1 <mark>6</mark> 80	1670	1700	1760
8/20/2015	8	1700	1660	1620	1190	1690
			1688 -			
8/20/2015 Dup			1000 -			

Results – Aluminum

Dissolved AI (mg/L)								
Date Week Influent Trough 1 Trough 2 Trough 3 Troug								
6/26/2015	0	873	Organic	Non-Organic	Anoxic	Oxygenated		
7/2/2015 1								
7/16/2015	3		926	843	841	843		
7/30/2015	5	878	864	879	955	878		
8/6/2015	6	795	887	887	846	832		
8/20/2015	8	763	759	787	954	734		
8/20/2015 Dup	8/20/2015 Dup							
Average		827	837	849	899	822		

	Total AI (mg/L)								
Date	Date Week Influent Trough 1 Trough 2 Trough 3 Trough 4								
6/26/2015	0	817							
7/2/2015	1								
7/16/2015	3		869	835	832	837			
7/30/2015	5	804	829	793	844	821			
8/6/2015	6	812	775	773	793	812			
8/20/2015	8	760	747	755	935	740			
8/20/2015 Dup			790						
Average		<mark>798.3</mark>	802.0	789.0	851.0	802.5			

//////////Organic//Non-Organic//Anoxic//Oxygenated/

Removal Rates Evaporation - Corrected

Metal	Trough 1	Trough 2	Trough 3	Trough 4
Fe	0.96%	4.47%	10.26%	1.89%
AI	1.40%	2.94%	0.00%	3.75%
Mn	3.84%	5.28%	0.18%	6.45%
Average	2.07%	4.23%	3.48%	4.03%

Organic Non- Anoxic Oxygenated Organic

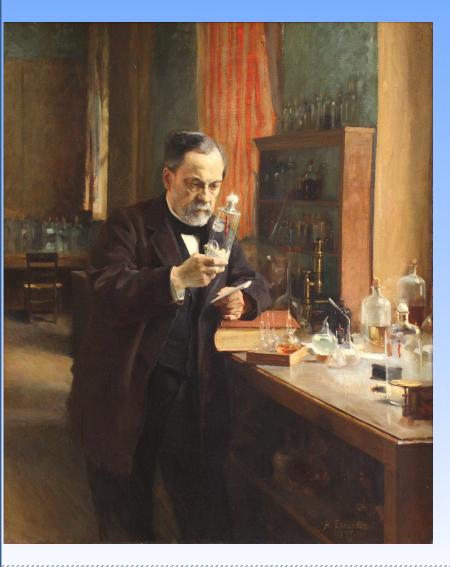
Grams/Day/m² Removal Rates

Constituent	T1	T2	T4			
Constituent	Solids analytical results					
Sulfate (mg/Kg)	30,000	48,000	49,000			
Iron (mg/Kg)	77,000	100,000	100,000			
Aluminum (mg/Kg)	6,100	2,500	3,800			
Mass of solids recovered (Kg)	5.9	12.7	2.8			
Area of media (m ²)	2.8					
Days of testing		56				
	Grams removed per sq meter per day					
Sulfate	1.13	3.89	0.88			
Iron	2.90	8.10	1.79			
Aluminum	0.23	0.20	0.07			
	Organic	Non-Organic	Oxygenated			

Summary

- Trough 2 performed the best overall during the test interval – what happens when voids are filled?;
- Trough 4 performed the best for aluminum and manganese, *but poorly by comparison for iron*;
- Trough 3 performed the best for iron, *but poorly by comparison for aluminum and manganese*; and
- The troughs without organic matter (Troughs 2 and 4) performed considerably better in reducing aluminum and manganese than the troughs with organic matter (Troughs 1 and 3). (Too much of a good thing?)

Path Forward


- Construct a pilot system (Fall 2015 completed);
- Pilot test suspended due to winter onset;
- Design a full scale Iron/Aluminum Terrace to fit within the available space at the portal using the Trough 2 Design (completed);
- Build full scale IAT in summer of 2016 (in progress);
- Monitor "Portal IAT" and either expand AIT on land closer to "beaver dam" or construct a biochemical reactor, etc. to remove remaining metal loading (2018).

Thank You

"In the fields of observation, chance favors only the prepared mind."

Louis Pasteur

jgusek@sovcon.com

