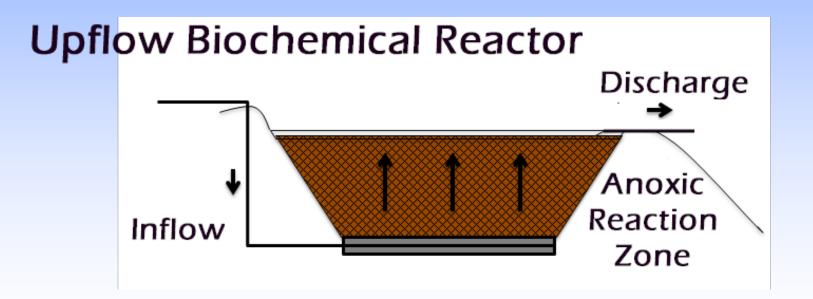


Sulfate Removal in Biochemical Reactors and Scrubbers Treating Neutral Low-Metal Concentration MIW

G. Fattore, J. Gusek, L. Josselyn - Sovereign Consulting Inc. T. Clark – Solfatara Laboratories LLC Lakewood, CO


ASMR NATIONAL MEETING - MORGANTOWN, WV

Background

Active mine site
mining influenced surface water
circumneutral pH.
3000 mg/L sulfate,
low metal concentrations
Sulfate limit 250 mg/L

Background

Biochemical Reactors (BCRs)Treat water via sulfate reduction

Passive Treatment Chemistry 101

□ Sulfate reduction:

 $SO_4^{2-} + 2 CH_2O \longrightarrow HS^- + 2 HCO_3^- + H^+$

□ Metal sulfide precipitation:

 $Me^{2+} + HS^{-} \longrightarrow MeS + H^{+}$

If there is not enough M^{+2} H_2S will be lost as a gas

SOVEREIGN CONSULTING INC

□Sulfate Polishing Units (SPUs) proposed to remove residual hydrogen sulfide/sulfide.

Objectives

Primary Goals

- Test Passive Treatment concept at bench scale using MIW from the site to remove sulfate and meet a 250 mg/L standard
- Test which organic media mixtures in the BCRs were more efficient in removing sulfate.
- Evaluate sulfate removal under varying MIW flow/loading rates

Objectives

Secondary Goals

Determine if one of the three solids as inorganic media in the SPUs remove hydrogen sulfide/sulfide.

Estimate the longevity of the different organic mixtures in the BCRs

Sovereign Consulting Inc. Substrate Selection

- Want reactive substrate

 Need large reduction in sulfate
 Need larger systems
- Locally available
- Inexpensive

Treatment Train Mixtures and Materials

Biochemical Reactors (BCRs)

Material	BCR 1	BCR 2	BCR 3
Biochar	0%	0%	10%
Wood Pellets	0%	20%	40%
Limestone	10%	10%	10%
Oat Straw	85%	65%	35%
Animal Manure	5%	5%	5%
Total	100%	100%	100%

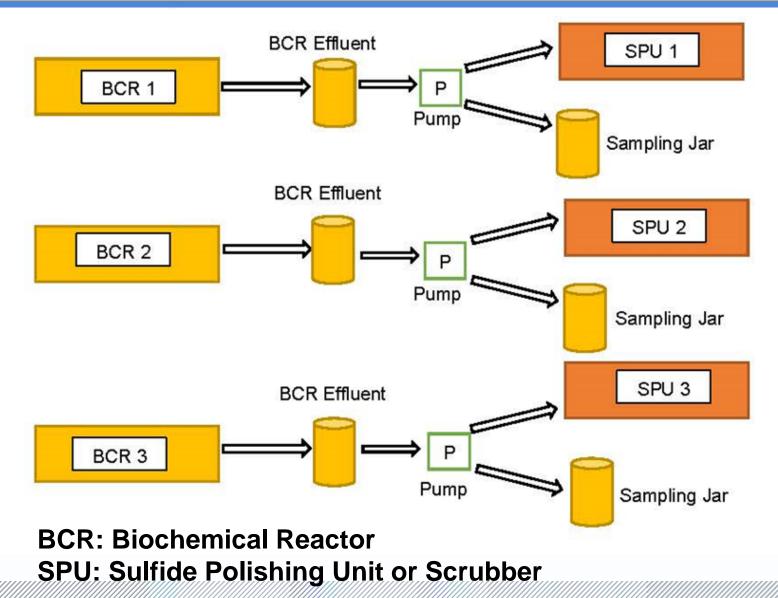
Materials Used in BCRs

Straw

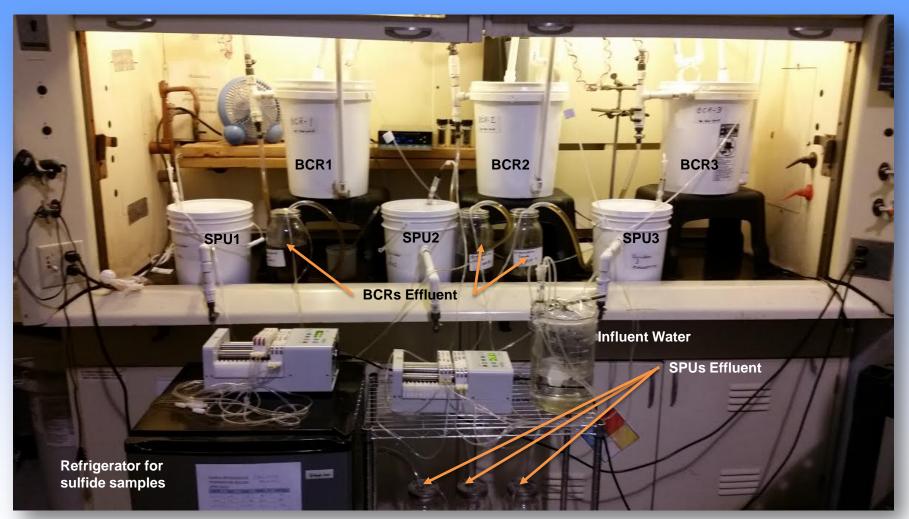
Wood Pellets

Treatment Train Mixtures and Materials

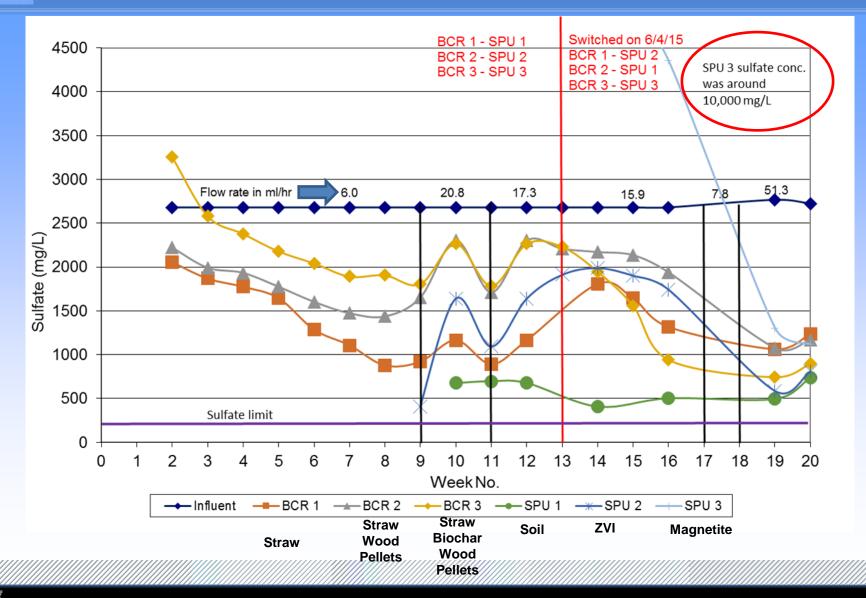
Sulfide Polishing Units (SPUs) or Scrubbers


Material	SPU	Quantity
Soil/Rock	SPU 1	1.9 kg
Scrap Metal (Steel cans)	SPU 2	6.1 kg
Magnetite (granular)	SPU 3	4.1 kg

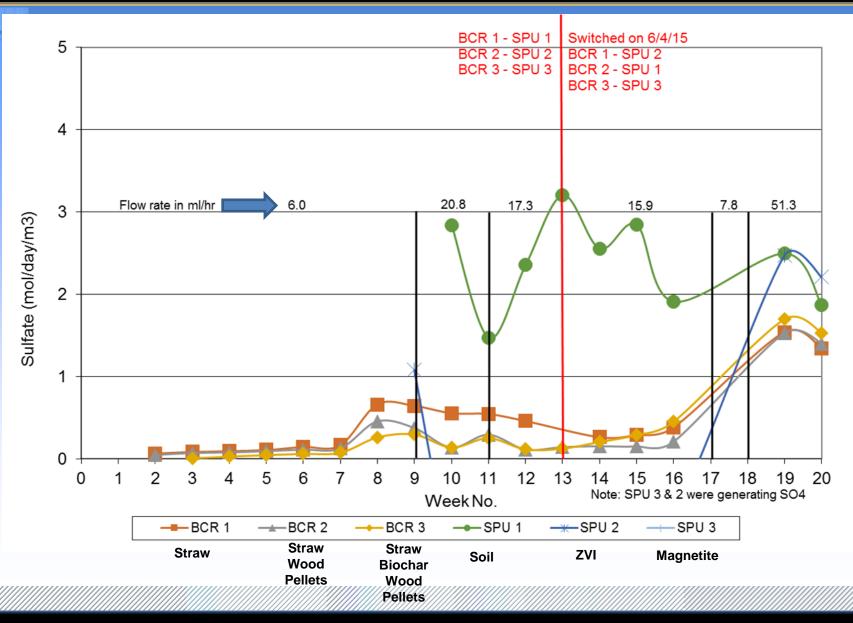
Materials Used in SPUs



Bench Scale Process



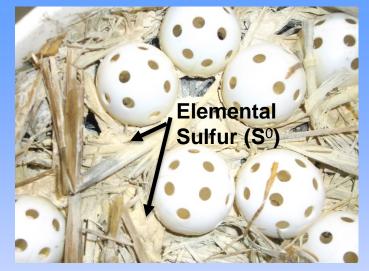
Bench Scale Set-up



Solfatara Laboratories LLC

Sulfate Removal

Sulfate Removal



BCRs Longevity

BCR Cells Substrate Longevity

BCR	Carbon (kg)	Average Carbon Consumption (g/day)	Bench Longevity (years)	Projected Full Scale Longevity (years)
1	0.4	0.16	3.0	18
2	0.6	0.11	5.2	31
3	1.2	0.13	9.1	54

BCRs & SPUs Autopsies

S⁰ on top of all BCRs

No S⁰ in SPU1

Reaction front

Bottom of BCR

BCR1 Cross Section

Top of BCR

No S⁰ in SPU2

SOVEREIGN CONSULTING INC.

What Did We Learn?

All BCRs were able to achieve sulfate removal rates of 1.3 to 1.5 mol SO₄⁻²/m³-day.
 Much higher than the "typical" design rate of 0.3 mol SO₄⁻²/m³-day

Higher sulfate removal rates were achieved in the SPU1 and 2, 1.9 and 2.2 mol SO₄⁻²/m³-day, respectively.

None of the BCR mixtures provided sufficient microbial activity to meet the 250 mg/L sulfate standard

What Did We Learn?

Sulfate was removed as elemental sulfur in all BCRs. Likely the result of HS⁻ under microaerophilic conditions.

Only low to non detect levels of H₂S & S⁻² were measured in effluent

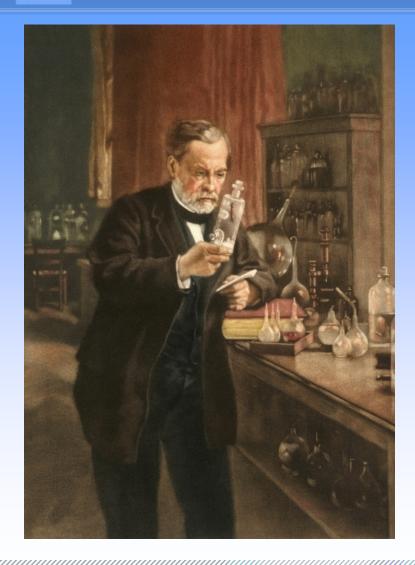
No S⁰ on top of SPU 1 & 2. However, within the pH range in the SPUs, HS⁻ oxidation possibly to thiosulfate, a soluble S compound (Hughes et al. 2009).

BCR Longevity Findings

BCR1 (straw-dominated) longevity may be too short to be worth considering for full scale design.

Projected BCR2 (straw & wood pellets) longevity for a full scale plant is consistent with the longevity estimates at other mining sites.

- □ Chosen for full scale
- Pellets replaced by wood chips


Biochar did not appear to substantially increase reduction rate

 SPU3- released high levels of sulfate suggesting contamination of magnetite
 Results not included

□ SPUs were operated to remove residual hydrogen sulfide/sulfide but they also removed more sulfate.

 SPU1 (site soil) removed sulfate at a higher rate than other media throughout the test.
 Used for final design

Thank You

"In the fields of observation, chance favors only the prepared mind."

L. Pasteur

gfattore@sovcon.com

<u>jgusek@sovcon.com</u>

Chemistry 101

- Sulfate reacts with organic carbon
 - Produce hydrogen sulfide and bicarbonate
 - Hydrogen sulfide
 reacts with metals

$$SO_4^{-2} + 2 CH_2O = H_2S + 2 HCO_3^{-1}$$

$$H_2S + M^{+2} = MS (solid) + 2H^{+2}$$

- Produce metal sulfide and hydrogen
- Limestone is often necessary
 - Increase the alkalinity
 - Consume hydrogen
 - Thus raise the pH
- If there is not enough M⁺²
 - H₂S will be lost as a gas

 $2H^+ + 2HCO_3^{-1} = 2H_2CO_3$

 $2H^{+} + CaCO_{3}(solid) = Ca^{+2} + 2HCO_{3}^{-1}$

Background

Sulfate reduction

 $SO_4^{-2} + 2 CH_2O = H_2S + 2 HCO_3^{-3}$ $H_2S + M^{+2} = MS (solid) + 2H^+$

If there is not enough M^{+2} H_2S will be lost as a gas

SPU1 & 2 were like mini-BCRs in series with the BCRs, using discharged organic C to promote microbial activity and the organic material provided support.

□ No S⁰ on top of SPU 1 & 2. However, within the pH range in the SPUs, HS⁻ oxidation possibly to thiosulfate, a soluble S compound (Hughes et al. 2009).

Conclusions

2 of 2

- The magnetite we used appeared to be contaminated and was not an effective media for sulfate removal.
- Sulfate percent removal in the SPUs was: 35% (SPU1 paired with BCR2) and 37% (SPU2 with BCR3).
- BCR2 and 3 substrate mixtures appear to provide reasonable longevity values.