IRON TRANSPORT AND REMOVAL DYNAMICS IN THE OXIDATIVE UNITS OF A PASSIVE TREATMENT SYSTEM

Dr. Leah Oxenford ASMR2017: What's Next for Reclamation

Average System Influent Water Quality (3 seeps) n= 40 2004-2008 pre system construction

Component	Concentration			
Iron	191.0 ± 10 mg/L			
Zinc	9.65 ± 1.0 mg/L			
Manganese	1.60 ± 0.1 mg/L			
Lead	62 ± 13 µg/L			
Cadmium	15 ± 5 µg/L			

 Q varies seasonally 400-700 L\min annually

• Influent pH 5.95 ±0.06

Net Alkaline
 393 ± 13 mg\L CaCO₃

Understanding Iron Chemistry

 Iron removal and storage within oxidative cells is based on two distinct processes:

• Iron Oxidation - Fe²⁺ oxidized to Fe³⁺

 $4Fe^{2+} + O_2 + 4H^+ \rightarrow 4Fe^{3+} + 2H_2O$

Iron Hydrolysis: Iron Precipitation

 $Fe^{3+} + 3H_20 \rightarrow Fe(OH)_{3(s)} + 3H^+$

Oxidation is the rate determining step.

Rate influenced by iron concentration, pH, dissolved oxygen, and temperature.

MRPTS Improves Water Quality of Tributary

Tributary Fe Loading

Before System Installation: 71.3 kg Fe/day average

After System Installation: 0.30 kg Fe/day

MRPTS Fe Removal

Oxidative Unit

Cell 1
Removes 87 kg/day

• Cell 2S/SN

• Removes 17.3 kg/day

Iron Removal Efficiency Profiling

- Provides essential insight into how the design of the treatment cell may be refined to optimize processes favoring iron removal enhancement.
 existing design
 - design of future passive treatment systems

Building Progressive Removal Profile:

- Horizontal Component
 - Sample locations with increasing distance (time) from influent
- Vertical Component
 - Sample locations with increasing depth from surface
- Temporal Component
 - Sample collection with increasing time (seasonal, annual, 3-5 years)

Progressive Iron Removal Dynamics

Accumulation of Fe (2008-2015)

Average Accumulation Depth Decreases With Increasing HRT within The Oxidative Unit

Solids Characterization

• Increased with HRT:

• Particle size Crystallinity

 Only crystallinity increased with increasing depth

	Top (Newest) FeOOH _(s)			Bottom (Oldest) FeOOH _(s)		
	Mean Size (µm)	D60/D10	SA (cm²)	Mean Size (µm)	D60/D10	SA (cm ²)
Cell 1	12.51±3.35	15.98±1.78	0.61±0.07	10.80±0.06	12.62±1.09	0.58±0.02
Cell 2N	18.84±5.26	12.60±1.55	0.44±0.10	18.18±3.57	10.23±0.50	0.40±0.08
Top (Newest) FeOOH _(s)				Bottom (Oldest) FeOOH(s)		
	Residual Moisture (%)	LOI Organic Matter (%)	Crystallinity (%)	Residual Moisture (%)	LOI Organic Matter (%)	Crystallinity (%)
Cell 1	1.6±0.2	3.4±1.6	18.7±0.2	0.9±0.1	5.2±3.1	16.0±0.01
Cell 2N	0.8±0.2	2.4±1.8	60.0±0.5	0.6±0.2	1.8±1.0	73.3±0.3

Amorphous

VS

Crystalline

A = InLens	EHT = 15.00 k\
	WD = 7.5 mm

Signal

kV Mag = 20.00 K X nm Stage at T = 0.0 ° μ_____

Date :25 Oct 2016 Time :13:22:12

Crystalline Goethite Formation

• Orthorhombic crystals observed in SEM

RAMAN microscopy verified as Goethite
Principle mineral phase

Solids Accumulation Inspires Rhodamine Tracer Study (2009-2015)

C1Out Rhodamine Transport Profile

C2Nout Rhodamine Transport Profile

C2Out Rhodamine Transport Profile Comparison (2015 vs 2009)

	Cell 1	Cell 2N	Cell 2S
Area Adjusted Iron Loading (g/m ² /day)	24.4	11.5	11.6
Mean Iron Removal Efficiency (%)	78	82	82
Mass of Iron Removed (kg/day)	87	17.3	17.3
Area Adjusted Removal Rate (g/m²/day)	19.0	11.5	11.6
Peak Residence Time (days)	1.5	4.3	3.7
70% Residence Time (days)	5.75	9.2	9.0
Design HRT (days)	7.7	3.5	3.5
Change in HRT from Design (days)	-2.0	+5.7*	+5.5*

*due to poor hydraulic conductivity and high storm activity impairing transport through the system

Significance of Work

- Iron oxyhydroxide precipitates formed from the oxidation and hydrolysis of Fe²⁺ accumulate within the preliminary oxidation cell (Cell 1) and the surface flow wetlands (Cells 2N/2S) of MRPTS.
- The accumulation of iron oxyhydroxides is not uniformly distributed within each cell, with the first section of the cell favoring deeper deposits of material.
- Thus far, performance has not been inhibited by solids accumulation, but hydraulic conductivity of Cells 3N/3S impact HRT and water levels in the oxidative unit.

Comments / Questions?

