TESTING NATIVE GRASSES FOR SURVIVAL AND GROWTH IN LOW pH MINE OVERBURDEN¹

by

David R. Dreesen², John T. Harrington, Anne M. Wagner, Leigh Murray, and Peixin Sun

Abstract. Overburden piles at the Molycorp molybdenum mine in north central New Mexico contain neutral rock types as well as mixed volcanic rocks, which are highly weathered materials with low pH and high salinity from pyrite oxidation. The mixing of rock types during overburden pile construction has resulted in heterogeneous substrates with a range of pH and soluble salt levels. An experiment to determine grass species more likely to survive and grow in these low pH overburden materials used substrate treatments consisting of an unadulterated acid rock, an acid: neutral overburden mixture ratio of 9:1, and an acid: neutral overburden mixture ratio of 3:1. Containerized grass seedlings of 54 species/ecotypes, primarily cool-season natives of the western U.S, were transplanted into these substrates. Species grown from seed collected at the Molycorp site having superior performance included Muhlenbergia montana (2 ecotypes), Blepharoneuron tricholepis, Festuca species (3 ecotypes), and a Poa species. A number of commercially available grass varieties had good survival and growth in these substrates: Deschampsia caespitosa 'Peru Creek', Festuca arizonica 'Redondo', Festuca ovina 'Covar', Festuca ovina 'MX-86', Festuca sp. 'Shorty', Poa compressa 'Reubens', Pascopyrum smithii 'Arriba, Barton, and Rosana', and Elymus trachycaulus 'San Luis'. Other native grass species that showed superior survival and growth in these acid rock substrates included Elymus canadensis, Danthonia intermedia, Sporobolus wrightii, Poa nemoralis, and Hesperostipa comata.

Additional Key Words: acidity, acid rock, EC, salinity, soluble salts.

Introduction

The Molycorp open pit molybdenum mine near Questa, NM was in operation from 1965 to 1983 and required the removal of 300 million metric tons of overburden. The overburden piles are situated at elevations from 2,400 to 3,000 m with surrounding vegetation of ponderosa pine, mixed conifer, and

¹Paper presented at the 2001 American Society for Surface Mining and Reclamation 18th National Meeting, Albuquerque, New Mexico, June 3-7, 2001. Pub. by ASSMR, 3134 Montavesta Rd., Lexington, KY 40502.

²David R. Dreesen, Agronomist, USDA-NRCS, Plant Materials Center, Los Lunas, NM 87031.

John T. Harrington, Associate Professor, New Mexico State University, Mora Research Center, Mora, NM 87732. Anne M. Wagner, Environmental Coordinator, Molycorp Inc., Questa, NM 87556. Leigh Murray, Professor, and Peixin Sun, Graduate Assistant, New Mexico State University, Department of Experimental Statistics, Las Cruces, NM 88001.

Proceedings America Society of Mining and Reclamation, 2001 pp 2-17 DOI: 10.21000/JASMR01010002

mountain shrub communities. Southerly aspects and steep slopes are the predominant natural site features and overburden pile characteristics. The overburden piles consist of mixed volcanic rocks (rhyolitic and andesitic types referred to as acid rock) as well as black andesite and aplite intrusives (referred to as neutral rock). The mixed volcanic rocks are highly fractured and weathered with low pH and high salinity from pyrite oxidation (Steffen Robertson and Kirsten Inc. 1995). The mixing of rock types during overburden pile construction has resulted in heterogeneous substrates with a range of pH and soluble salt levels.

Objectives

The difficulties in establishing vegetation in low pH overburden compelled efforts to determine species with greater likelihood to survive and grow in these substrates. The objective of this study was to examine the suitability of various grasses for direct establishment in the range of overburden types at the Molycorp waste rock piles. The overburden materials with the highest salt levels may preclude plant growth until natural amelioration (i.e., leaching of salts) or

substrate manipulation reduces the constraining constituents. It may be desirable to use amendments (e.g. neutral overburden) that ameliorate these severe chemical conditions to speed revegetation; a prerequisite will be to determine the appropriate incorporation rates for these amendments. This study provides some insight into the overburden pH and salt levels that allow adequate grass survival and growth.

Methods and Materials

The screening of grass species for growth and survival was conducted at the New Mexico State University's Mora Research Center, Mora, NM. The substrate treatments used in this experiment consisted of an unadulterated acid rock (LPH - low pH, low soluble salts), an acid: neutral overburden mixture ratio of 9:1 (HSS - high soluble salts, intermediate pH), and an acid: neutral overburden mixture ratio of 3:1 (LSS -The acid rock was low soluble salts, high pH). excavated from mixed volcanic rock on the second terrace of the Sulphur Gulch pile, while the neutral rock was dug from aplite and black andesite rock on the first terrace of the Sulphur Gulch pile. The 2-overburden types were crushed and screened to less than 13 mm and then mixed in the ratios described above and transported to the Mora Research Center in July 1995. Three replicate treatment blocks of each substrate were constructed in polyethylene nursery tubs with drain holes (capacity 750 liters, diameter 1.47 m, and depth 0.46 m). Each tub was filled with approximately 600 liters of substrate (an approximate depth of 0.4 m). The nine tubs were placed in a random arrangement in an outdoor facility used for testing plant tolerance to environmental stresses and were installed in the ground to a depth of about 0.4 m. The LPH substrate was placed into 3 tubs in August 1995 in anticipation of an experiment that was not conducted. The other substrates (HSS and LSS) were put into the other 6 tubs during August 1997, several weeks before planting. At the termination of the experiment (i.e., 2 months after harvesting and evaluation), 3 overburden samples were taken from each tub and analyzed for pH and electroconductivity (EC) as described in the Soil Quality Test Kit Guide manual (USDA 1998). The mean pH and mean EC before planting and after harvesting are presented in Table 1. The leaching of the pure acid rock substrate (LPH) for an additional 2 years before planting resulted in the reduced EC in this substrate relative to the HSS substrate. Linear interpolation of the EC values for the LPH substrate yields an estimated EC of 2.6 dS/m at the time of planting.

The grass transplants were grown from conmercially available seed, seed from evaluations at

the Los Lunas Plant Materials Center, and seed collected from the vicinity of the Molycorp Mine. The tested species in Table 2 consisted of primarily native cool season grass of the western U.S. with emphasis on Rocky Mountain species. The currently accepted taxonomy based on the Integrated Taxonomic Information Service (ITIS 2000) as well as traditional scientific name, vernacular name, seed source information, and grass tribe (as grouped by Allred 1993) is presented in Table 2. Several entries have origins outside North America (FEOV-C, POAL-G, POCO-R, and PHPR). FETR-S was bought commercially but was not labeled as to species and may not be a true variety or readily available.

Seeds of the 54 entries were sown in plug trays filled with a peat moss/perlite media. After plug root balls were well developed, the seedlings were transplanted during August 1996 into Ray Leach Super Cells (164 ml) containing the same media. The transplants were over-wintered outdoors; the following spring and summer, periodic clipping was required to allow uniform watering. The transplants were installed in the treatment blocks (i.e., tubs) during September 1997 using dibbles the same size and shape as the root balls. The entries were grouped by genera or grass tribe; each group was assigned an area with the same relative position in each tub. Within each group, the entries were placed in a different random arrangement in each tub. For 47 of 54 grass entries, 4 plants of each entry were placed in a row plot within the appropriate group area with about 4 cm spacing between each plant. The other 7 grass entries were represented by 1 to 3 plants per row plot. After planting and during dry periods, the grasses were watered by hand. Several times during the growing season of 1998, the plots were watered with a soluble fertilizer solution containing 100 mg N/l from 20-10-20 Peters Peat Lite Special.

In September 1998, the grasses were harvested. The number of live plants and the number of plants with seedheads in each row plot were recorded. All live plants were harvested from each row plot as a group and placed in a paper bag for air drying and weighing. Thus, the total dry weights represent from 1 to 4 plants. The biomass per live plant was determined by dividing the total dry weight of the plot by the number of live plants in the plot. Analyses of variance were performed on biomass per live plant for each species/ecotype using SAS GLM to determine the effect of substrate (SAS Institute 1989). The data was analyzed as a complete randomized design with substrates representing treatments and replicate tubs within treatments representing error terms. The least significant difference (LSD) pair-wise comparison technique was differences determine significant used to

Substrate	pH Before	pH After	EC Before (dS/m)	EC After (dS/m)	Weathering Period (months)
LPH (Low pH)	2.7	2.8	3.6	2.0	40
HSS (High Salinity)	3.3	3.4	3.2	2.2	15
LSS (Low Salinity)	3.7	3.9	2.1	2.0	15

 Table 1. Mean pH and EC of substrate materials before (at the time of substrate placement) and after weathering (2 months after biomass harvest) and the period between these events.

between biomass means for entries with F-test probabilities less than 0.05. The survival data was analyzed using a categorical analysis of variance (CATMOD) procedure on the dichotomous response variable (live vs. dead) for each entry (SAS Institute 1990). The analysis of variance test statistic was an asymptotic chi-square test. Asymptotic pair-wise Z statistics (analogous to LSD) were used to determine significant differences between survival means for entries with chi-square test probabilities less than 0.05.

Results and Discussions

Biomass Production in Overburden Treatments

The grand mean biomass for all species (see Table 3) was 0.54 g in the high salinity substrate (HSS) compared with 0.62 g in the low pH substrate (LPH) and 1.17 g in the low salinity substrate (LSS). Of the 18 entries with the greatest overall mean biomass (greater than 1.0 g/plant), 7 entries originated from Molycorp seed sources and included 4 genera (Festuca, Poa, Blepharoneuron, and Muhlenbergia). Eight commercially available species (DECA-PC, ELTR-SL, PASM-A, PASM-B, FEAR-R, FEOV-MX, PHPR, and POCO-R) along with SPWR, FETR-S, and PONE are the other 11 entries with the greatest overall biomass production per plant. Of the 18 best overall biomass producers, two grasses (FEMOLY-C and POMOLY) had biomass production greater than 1.7 g/plant in the high salinity substrate (HSS) while 14 of the other 16 entries (excluding ELTR-SL and FEAR-R) had biomass production between 0.7 and 1.4 g/plant in the HSS substrate. One grass (HECO), which did not have superior overall biomass production, was in this later biomass class (0.7 to 1.4 g/plant) in the HSS substrate. For the 12 entries with mean biomass greater than 1.0 g/plant in the low pH substrate (LPH), 9 were among the best overall biomass producers, but 3 entries were not (ACHY-N, CAREX, AGSC). In the LSS substrate, 5 of the best overall performers had biomass yields of less than 1.4 g/plant (DECA-PC, PHPR, SPWR, MUMO-AUB, and MUMO-GHS) while 4 of the intermediate overall performers had biomass yields greater than 1.4 g/plant (PASM-R, FEOV-C, FETH, and FETR-D).

Analyses of variance of biomass production (Table 3) showed significant substrate effects (P<0.05) for 20 entries. Means testing showed the low salinity substrate (LSS) had significantly greater biomass (P<0.05) than the other substrates for 7 Festuca entries (FESA, FETR-D, FEMOLY-SGS, FETH, FETR-S, FEMOLY-SGT, and FEAR-R) and PASM-A, LETR-SH, and ACMOLY. Three species had greater mean biomass in the LPH and the LSS substrates than in the high salinity substrate (HSS): ACRO, NAVI, and DAIN. The low salinity substrate (LSS) had greater biomass than the low pH substrate (LPH) for 2 members of Poeae tribe: PONE and POCO-R, The only entries that had significantly greater biomass in the high salinity substrate (HSS) than in the LPH substrate were FEMOLY-C and BRMOLY. Two members of Triticeae tribe (ELLA-C and ELCA) and HENE had greater biomass in the LSS substrate than in the high salinity substrate (HSS). Among the better performing species, several Eragrostideae tribe members (BLTR, MUMO-AUB, MUMO-GHS, and SPWR) and Aveneae tribe members (DECA-PC and PHPR) showed no significant difference (P>0.4) among substrate treatments.

Survival Percentages in Overburden Treatments

Five of the 14 entries with at least 85% <u>overall</u> survival were Molycorp seed sources from the *Festuca* (FEMOLY-SGT, FEMOLY-SGS, FEMOLY-C) and *Muhlenbergia* (MUMO-AUB, MUMO-GHS) genera (see Table 4). Four commonly available varieties are also included in this survival class: FEAR-R, ELLA-S, LECI-T, and FEOV-MX. This survival class also included DAIN, DECA-PC, PONE, SPWR, and FETR-S.

The differences in the grand mean survival percentages for the 3 substrates indicate that salinity level was better related (i.e., negative correlation) with survival than substrate acidity level. The high salinity substrate (HSS) had the lowest survival when all species were averaged, 47% (Table 4). For the 17 entries with at least 75% survival in the HSS treatment, 8 entries were Molycorp seed sources representing 5 genera (*Festuca, Muhlenbergia, Poa, Blepharoneuron, and Bromus*). Four commercially

available species are also included in this survival class: FEAR-R, POCO-R, ELLA-S, and LECI-T. The other species in this survival class are DAIN, PONE, SPWR, FETR-S and DECA-PC. The results for the low salinity substrate (LSS) show 43 entries with greater than 90% survival.

The two species with multiple commercial varieties had small differences in overall survival percentages indicating little varietal influence on survival in these low pH overburden materials. These two species and their varieties were *Pascopyrum smithii* ('Barton' 81%, 'Rosana' 81%, and 'Arriba' 78%) and *Elymus trachycaulus* ('San Luis' 75%, 'Pryor' 67%, and 'Revenue' 61%).

Approximately one-half (26 out of the 54) entries had significant survival differences (P<0.05) among substrates (Table 4). The group of species having greater survival in both the low pH (LPH) and low salinity (LSS) substrates than in the high salinity substrate (HSS) included 9 Triticeae members (ELTR-SL, ELTR-P, LETR-SH, LECI-M, PSSP-S, PASM-A, PASM-B, PASM-R, and ELCA), 3 Stipeae members (ACHY-N, ACRO, and HECO), as well as FETR-D, The Bromus ecotype from FEID-J, and PHPR. Molycorp, BRMOLY, and POCO-R were the only entries with significantly greater mean survival in both the high salinity (HSS) and low salinity (LSS) substrates than in the LPH treatment. Five Stipeae entries (HENE, ACLE, NAVI, ACMOLY and ACHY-N), 4 Triticeae entries (PSSP-W, ELEL-AZ, ELEL-PMC, and ELTR-R) and POAL had survival means in the order of LPH>LSS>or =HSS. Among the species with overall high survival (>80%), a number of entries showed no significant treatment effects (P>0.2) including 6 Poeae (FEAR-R, FEMOLY-SGT, FEMOLY-C. entries FEMOLY-SGS, FETR-S, and PONE), 4 Eragrostideae members (MUMO-GHS, MUMO-AUB, BLTR, and SPWR) as well as ELLA-S, DECA-PC, and DAIN.

Best Performing Species

A comparison of the top 10 performers in overall survival and in overall biomass production yields 4 entries in common: FEMOLY-SGT, FEMOLY-SGS, SPWR, and FETR-S. In the low pH substrate (LPH) the following species had superior survival (100%) and biomass production (>1.0 g/plant): MUMO-GHS, MUMO-AUB, ELTR-SL, FEMOLY-SGS, and PASM-B. In the high salinity substrate (HSS) the following species had superior survival (>80%) and biomass production (>1.0 g/plant): FEMOLY-SGT, PONE, SPWR, POCO-R, FEMOLY-SGS, and BLTR. In the LSS substrate, the following entries had superior survival (100%) and biomass production (>2.0 g/plant): FEMOLY-SGT, FEMOLY-SGS, POMOLY, FEOV-MX, PASM-A, PASM-B, FETR-S, POCO-R, and PONE.

Percentage of Plants with Seedheads

The overall mean percentage of plants with seedheads was greater than 40% for a number of entries with superior survival and biomass production: POCO-R, POMOLY, BLTR, FEMOLY-C, MUMO-GHS, MUMO-AUB, and PASM-B. Four species had high percentages of seedheads (>80%) in the low pH substrate (LPH): FESA, HECO, ELTR-SL, and ACHY-N. Three Poeae entries had high seedhead percentages (>90%) in the high salinity substrate (HSS): BRMOLY, POCO-R, and POMOLY.

Summary Evaluation of Grass Tribes, Genera, Species, and Ecotypes

The overall biomass production and overall survival of grass species is presented in Table 5 along with an overall rating (biomass multiplied by survival) and an overall combined rank (overall biomass rank plus overall survival rank divided by 2). In addition, Table 5 shows the survival and biomass ranks in the 2 treatments with most extreme chemistry: the low pH substrate (LPH) and the high salinity substrate (HSS).

The one representative of the Andropogoneae tribe in the experiment, SCSC, was a Molycorp seed source and exhibited overall poor performance. Although this species was collected from a native stand on weathered acid rock (pH = 4.3), the root zone soils had low salinity (EC = 0.1 dS/m). The much higher salinity of the 3 substrates in the experiment is probably one of the main factors in the poor performance of this species.

The experiment tested 4 species in the Aveneae tribe and each species showed at least one good performance ranking in one of the two extreme substrates. Tufted hairgrass, DECA-PC, had a good overall ranking along with an excellent biomass ranking in the low pH (LPH) substrate and good rankings in the other 3 categories. Timothy, PHPR, had good to excellent rankings for biomass production in both substrates and good survival in the low pH (LPH) substrate. Rough bentgrass, AGSC, showed a superior ranking only for biomass in the low pH (LPH) substrate.

The single member of the Danthonieae tribe, DAIN, had good overall ranking with excellent survival in the 2 extreme treatments. The CAREX species (in the Cyperaceae family) had a fair overall ranking and fair to good rankings in the extreme substrates.

The 4 entries representing the Eragostideae tribe had very good overall rankings with good to excellent survival and biomass rankings in both extreme substrates. Three of these entries were Molycorp seed sources: BLTR, MUMO-GHS, and MUMO-AUB. Giant sacaton, SPWR, was one of the best performers in the high salinity (HSS) substrate, while MUMO-AUB was one of best performers in the low pH substrate (LPH).

The Poeae tribe was represented by 18 entries with overall performance ranging from excellent to very Of the 20 entries with the best overall poor. performance, 10 belonged to the Poeae tribe. Of these 10 Poeae entries, 4 were Molycorp seed sources (FEMOLY-C, FEMOLY-SGS, FEMOLY-SGT, and POMOLY) and 6 were commercial sources (FEAR-R, FEOV-C, FEOV-MX, FETR-S, POCO-R, and PONE). Among the Bromus species, BRCI and BRMOLY exhibited fair to good biomass and survival rankings in the high salinity substrate (HSS), but very poor performance in the low pH substrate (LPH). Mountain brome, BRMA, had the worst ranking of all species The Festuca entries with good to excellent tested. survival and biomass rankings in the low pH substrate (LPH) included FEAR-R, FEMOLY-SGS, and FETR-S. In the high salinity substrate (HSS), 5 entries exhibited good to excellent survival and biomass rankings: FEOV-MX, FEMOLY-C, FEMOLY-SGS, FEMOLY-SGT, and FETR-S. Three Poa entries (POCO-R, POMOLY, and PONE) had very good to excellent rankings in the high salinity substrate (HSS), but mainly poor rankings in the low pH substrate (LPH). Alpine bluegrass, POAL, was the third poorest in overall average combined rank.

The Stipeae tribe entries had generally poor rankings except for ACHY-N and HECO. ACHY-N had an excellent biomass ranking in the low pH substrate (LPH), while HECO had an excellent survival ranking in the low pH (LPH) substrate and a good biomass ranking in the high salinity substrate (HSS). The Molycorp seed source Stipeae, ACMOLY, had very poor performance overall and in the 2 extreme substrates. This species was a superior performer on neutral low salinity overburden in other studies at the mine site indicating an intolerance to acid and saline conditions. ACRO had an excellent survival ranking in the low pH (LPH) substrate but a very poor survival ranking in the high salinity substrate (HSS).

The only overall good performers among the Triticeae tribe were the 3 Pascopyrum smithii varieties.

'Arriba' had a substantially better biomass ranking in the high salinity substrate (HSS); whereas 'Rosana' and 'Barton' had higher biomass and survival rankings in the low pH substrate (LPH). Several other species had high survival rankings in the LPH substrate (ELLA-S, ELTR-SL, and ELCA), but only ELTR-SL had an excellent biomass ranking in this substrate. In general, none of Triticeae except the *Pascopyrum smithii* varieties had good biomass rankings in the HSS substrate, although ELLA-C, ELLA-S, and LECI-T had good or better survival rankings in this substrate.

Conclusions

The differences in grass species performance among the substrates would lead to different species recommendations depending on the type of substrate to be revegetated. The chemical constraints (i.e., pH, EC, or both) and their variability in the overburden area to be revegetated are crucial factors that would affect species recommendations.

Species recommendations can be based on the overall performance in all 3 substrates for a highly variable overburden site with chemical characteristics spanning the range found in this experiment. The entries among the top one-third in the overall average combined rank or in the overall rating (Table 5) can be classified into 3 groups:

- Molycorp seed sources -- BLTR, MUMO-GHS, MUMO-AUB, FEMOLY-C, FEMOLY-SGS, FEMOLY-SGT, and POMOLY.
- 2. Commonly available varieties DECA-PC, FEAR-R, FEOV-C, FEOV-MX, POCO-R, ELTR-SL, PASM-A, PASM-B and PASM-R.
- 3. Other species DAIN, SPWR, FETR-S, HECO, and PONE.

For sites with low pH but not extreme salinity, species recommendations can be based on superior performance (top one-third in survival and growth rank) in the low pH (LPH) substrate.

- 1. Molycorp seed sources BLTR, MUMO-GHS, MUMO-AUB, and FEMOLY-SGS.
- 2. Commonly available varieties DECA-PC, FEAR-R, PASM-B, PASM-R, and ELTR-SL.
- Other species DAIN, PHPR, ELCA, and FETR-S.

A different set of species had superior performance in the high salinity substrate (HSS) and would be recommended for sites where salinity would be the primary limiting factor.

- Molycorp seed sources BLTR, MUMO-GHS, MUMO-AUB, FEMOLY-C, FEMOLY-SGS, FEMOLY-SGT, and POMOLY.
- Commonly available varieties DECA-PC and POCO-R.
- 3. Other species CAREX, SPWR, FETR-S, and PONE.

If cost was not a consideration, the production of Molycorp ecotype seed for Muhlenbergia and Blepharoneuron would provide 2 warm season grasses of generally superior performance, which are not typically commercially available. The Molycorp ecotypes of Festuca are among the best performers especially in the high salinity substrate (HSS). Although several commercial sources of Festuca had good performance (FEAR-R, FEOV-MX, and FETR-S), the Molycorp ecotypes were superior. In overall rank POMOLY is similar to POCO-R and may be the same species; however, POMOLY was superior in biomass production in the low pH substrate (LPH). A similar comparison can be developed for BRMOLY and BRCI with BRMOLY having superior survival in the high salinity substrate (HSS). The production of ACMOLY or SCSC seed could not be justified based on their performance in these acid rock substrates; their merits depend solely on superior growth and survival in neutral rock or very low salinity acid rock.

A number of commercially available grass varieties had good survival and growth in a range of overburden chemistries: DECA-PC, FEAR-R, FEOV-C, FEOV-MX, POCO-R, PASM-A, PASM-B, PASM-R, and ELTR-SL. Other grass species, which may or may not be commercially available, showed superior survival and growth in these acid rock substrates: ELCA, DAIN, SPWR, FETR-S, PONE, PHPR and HECO.

Acknowledgements

Molycorp Inc., Questa Division, provided the funding to conduct this study and the overburden materials. Mora Research Center, New Mexico State University, provided the research facility to test the performance of native grasses in low pH overburden.

Literature Cited

- Allred, K.W. 1993. A field guide to the grasses of New Mexico. Published by the Department of Agricultural Communications, College of Agriculture and Home Economics, New Mexico State University, Las Cruces, NM. 258 pp.
- ITIS. 2000. Integrated taxonomic information service. http://www.itis.usda.gov/plantproj/it is/class_report.html
- SAS Institute, Inc. 1989. SAS/STAT user's guide, version 6, fourth edition, volume 2. SAS Institute, Inc., Cary, NC.
- SAS Institute, Inc. 1990. SAS/STAT user's guide, version 6, fourth edition, volume 1. SAS Institute, Inc., Cary, NC.
- Steffen, Robertson, and Kirsten Inc. 1995. Questa Molybdenum Mine geochemical assessment. Prepared for Molycorp Inc., P.O. Box 469, Questa, NM 87556. Prepared by Steffen Robertson and Kirsten (U.S.) Inc., 3232 South Vance Street, Lakewood, Colorado 80227.
- USDA. 1998. Soil quality test kit guide. United States Department of Agriculture. Agricultural Research Service. Natural Resources Conservation Service. Soil Quality Institute. August 1998. 82 pp.

Abbreviated Scientific Name	Current Accepted Scientific Name	Current Author	Traditional Scientific Name	Vernacular Name	Source**	Variety or Origin Description	Seed Source or Ecotype Source (ES)	Grass Tribe
ACHY-N	Achnatherum hymenoides	(Roemer & J.A. Schultes) Barkworth	Oryzopsis hymenoides	Indian Ricegrass	GSC	'Nezpar'	Idaho (ES)	Stipeae
ACLE	Achnatherum lettermanii	(Vasey) Barkworth	Stipa lettermani	Letterman Needlegrass	GSC	<u> </u>	Utah	Stipeae
ACMOLY	Achnatherum sp.*	na	Stipa sp.*	?	MM	Elev. 2500 m	Road Cut Mill Slope (ES)	Stipeae
ACRO	Achnatherum robustum	(Vasey) Barkworth	Stipa robusta	Sleepygrass	WNSC		Colorado	Stipeae
AGSC	Agrostis scabra	Willd.	Agrostis scabra	Rough Bentgrass	WNSC		Idaho	Aveneae
BLTR	Blepharoneuron tricholepis*	(Torr.) Nash	Blepharoneuron tricholepis*	Pine Dropseed*	MM	Elev. 2600 m	East of Crusher (ES)	Eragrostideae
BRCI	Bromus ciliatus	L.	Bromus ciliatus	Fringed Brome	WNSC		Alberta	Poeae
BRMA	Bromus marginatus	Nees ex Steud.	Bromus marginatus	Mountain Brome	GSC	'Bromar'	Washington (ES)	Poeae
BRMOLY	Bromus (ciliatus)*	L.	Bromus (ciliatus)*	Fringed Brome*	MM	Elev. 2500 m	Road Cut Mill Slope (ES)	Poeae
CAREX	Carex sp.	na	Carex sp.	Sedge			N. Arizona (ES)	na
DAIN	Danthonia intermedia	Vasey	Danthonia intermedia	Timber Oatgrass	WNSC	,• ·	Colorado	Danthonieae
DECA-PC	Deschampsia caespitosa	(L.) Beauv.	Deschampsia caespitosa	Tufted Hairgrass	COPMC	'Peru Creek'	Colorado (ES)	Aveneae
ELCA	Elymus canadensis	L.	Elymus canadensis	Canada Wildrye	WNSC		Colorado	Triticeae
ELEL-AZ	Elymus elymoides ssp. elymoides	(Raf.) Swezey	Sitanion hystrix	Bottlebrush Squirreltail	GSC		Arizona	Triticeae
ELGL	Elymus glaucus	Buckl.	Elymus glaucus	Blue Wildrye	GSC		Washington	Triticeae

Table 2. The abbreviated scientific names, current and traditional scientific names, vernacular names, and seed source information for the species and ecotypes used in the testing of growth and survival in low pH overburden.

*tentative identification,

**GSC = Granite Seed Co., WNSC = Western Native Seed Co., MM = Molycorp Mine Collection, COPMC = Meeker, Colorado Plant Materials Center

 ∞

Abbreviated Scientific Name	Current Accepted Scientific Name	Current Author	Traditional Scientific Name	Vernacular Name	Source**	Variety or Origin Description	Seed Source or Ecotype Source (ES)	Grass Tribe
ELLA-C	Elymus lanceolatus ssp. lanceolatus	(Scribn. & J.G. Sm.) Gould	Agropyron dasystachyum	Thickspike Wheatgrass	GSC	'Critana'	Montana (ES)	Triticeae
ELLA-S	Elymus lanceolatus ssp. lanceolatus	(Scribn. & J.G. Sm.) Gould	Agropyron dasystachyum	Streambank Wheatgrass	GSC	'Sodar'	Oregon (ES)	Triticeae
ELTR-P	Elymus trachycaulus ssp. trachycaulus	(Link) Gould ex Shinners	Agropyron trachycaulum	Slender Wheatgrass	GSC	'Pryor'	Montana (ES)	Triticeae
ELTR-R	Elymus trachycaulus ssp. trachycaulus	(Link) Gould ex Shinners	Agropyron trachycaulum	Slender Wheatgrass	GSC	'Revenue'	Saskatchewan (ES)	Triticeae
ELTR-SL	Elymus trachycaulus ssp. trachycaulus	(Link) Gould ex Shinners	Agropyron trachycaulum	Slender Wheatgrass	GSC	'San Luis'	Colorado (ES)	Triticeae
ELVI	Elymus virginicus	L.	Elymus virginicus	Virginia Wildrye	WNSC		Missouri	Triticeae
FEAR-R	Festuca arizonica	Vasey	Festuca arizonica	Arizona Fescue	GSC	'Redondo'	New Mexico (ES)	Poeae
FEID-J	Festuca idahoensis	Elmer	Festuca idahoensis	Idaho Fescue	GSC	'Joseph'	Idaho (ES)	Poeae
FEMOLY-C	Festuca sp.*	na	Festuca sp.*	?	Increase at LLPMC	MM**, Elev. 3000 m, Tall Stature	Capulin Overburden Pile (ES)	Poeae
FEMOLY- SGS	Festuca sp.*	na	Festuca sp.*	?	Increase at LLPMC	MM**, Elev. 2600 m, Short Stature	Sulphur Gulch Overburden Pile (ES)	Poeae

Table 2 (cont.). The abbreviated scientific names, current and traditional scientific names, vernacular names, and seed source information for the species and ecotypes used in the testing of growth and survival in low pH overburden.

*tentative identification

**GSC = Granite Seed Co., WNSC = Western Native Seed Co., MM = Molycorp Mine Collection, LLPMC = Los Lunas, New Mexico Plant Materials Center

Abbreviated Scientific Name	Current Accepted Scientific Name	Current Author	Traditional Scientific Name	Vernacular Name	Source**	Variety or Origin Description	Seed Source or Ecotype Source (ES)	Grass Trib
FEMOLY- SGT	Festuca sp.*	na	Festuca sp.*	?	Increase at LLPMC	MM**, Elev. 2600 m, Tall Stature	Sulphur Gulch Overburden Pile (ES)	Poeae
FEOV-C	Festuca ovina	L.	Festuca ovina	Sheep Fescue	GSC	'Covar'	Turkey (ES) (introduced)	Poeae
FEOV-MX	Festuca ovina	L.	Festuca ovina	Sheep Fescue	WRSC	'MX-86'		Poeae
FESA	Festuca saximontana	Rydb.	Festuca saximontana	Mountain Fescue	WNSC		Canada	Poeae
FETH	Festuca thurberi	Vasey	Festuca thurberi	Thurber Fescue	WNSC	······	Colorado	Poeae
FETR-D	Festuca trachyphylla	(Hack.) Krajina	Festuca ovina ssp. duriuscula	Hard Fescue	GSC	'Durar'	Oregon (ES)	Poeae
FETR-S	Festuca (trachyphylla)*	(Hack.) Krajina	Festuca (ovina ssp. duriuscula)*	Hard Fescue*	PSW	'Shorty'		Poeae
HECO	Hesperostipa comata ssp. comata	(Trin. & Rupr.) Barkworth	Stipa comata	Needle and Thread	WNSC		Montana	Stipeae
HÈNE	Hesperostipa neomexicana	(Thurb. Ex Coult.) Barkworth	Stipa neomexicana	New Mexico Needlegrass	WNSC		Arizona	Stipeae
KOMA	Koeleria macrantha	(Ledeb.) J.A. Schultes	Koeleria cristata	Prairie Junegrass	GSC		Washington	Aveneae
LECI-M	Leymus cinereus	(Scribn. & Merr.) A. Löve	Elymus cinereus	Great Basin Wildrye	GSC	'Magnar'	Saskatchewan (ES)	Triticeae
LECI-T	Leymus cinereus	(Scribn. & Merr.) A. Löve	Elymus cinereus	Great Basin Wildrye	GSC	'Trailhead'	Montana (ES)	Triticeae
LETR-SH	J		Elymus triticoides	Creeping Wildrye	GSC	'Shoshone'	Wyoming (ES)	Triticeae

Table 2 (cont.). The abbreviated scientific names, current and traditional scientific names, vernacular names, and seed source information for the species and ecotypes used in the testing of growth and survival in low pH overburden.

*tentative identification

**GSC = Granite Seed Co., WNSC = Western Native Seed Co., MM = Molycorp Mine Collection, LLPMC = Los Lunas, New Mexico Plant Materials Center, PSW = Plants of the Southwest, WRSC = Wind River Seed Co.

Abbreviated Scientific Name	Current Accepted Scientific Name	Current Author	Traditional Scientific Name	Vernacular Name	Source**	Variety or Origin Description	Seed Source or Ecotype Source (ES)	Grass Tribe
MUMO- AUB	Muhlenbergia montana*	(Nutt.) A.S. Hitchc.	Muhlenbergia montana*	Mountain Muhly*	MM	Elev. 2900 m	Above Upper Blaster Pile (ES)	Eragrostideae
MUMO- GHS	Muhlenbergia montana*	(Nutt.) A.S. Hitchc.	Muhlenbergia montana*	Mountain Muhly*	MM	Elev. 2500 m	Goat Hill Slope (ES)	Eragrostideae
NAVI	Nassella viridula	(Trin.) Barkworth	Stipa viridula	Green Needlegrass	WNSC		Washington	Stipeae
PASM-A	Pascopyrum smithii	(Rydb.) A. Löve	Agropyron smithii	Western Wheatgrass	GSC	'Arriba'	Colorado (ES)	Triticeae
PASM-B	Pascopyrum smithii	(Rydb.) A. Löve	Agropyron smithii	Western Wheatgrass	GSC	'Barton'	Kansas (ES)	Triticeae
PASM-R	Pascopyrum smithii	(Rydb.) A. Löve	Agropyron smithii	Western Wheatgrass	GSC	'Rosana'	Montana (ES)	Triticeae
PHPR	Phleum pratense	L.	Phleum pratense	Timothy				Aveneae
POAL	Poa alpina	L	Poa alpina	Alpine Bluegrass	GSC	'Greuning'	France (ES)	Poeae
POCO-R	Poa compressa	L.	Poa compressa	Canada Bluegrass	GSC	'Reubens'	ldaho (ES)	Poeae
POMOLY	Poa (compressa)*	L.	Poa (compressa)*	Canada Bluegrass*	MM	Elev. 2800 m	Lower Blaster Pile (ES)	Poeae
PONE	Poa nemoralis ssp. interior	(Rydb.) W.A. Weber	Poa interior	Inland Bluegrass	WNSC		Colorado	Poeae
PSSP-S	Pseudoroegneria spicata ssp. spicata	(Pursh) A. Löve	Agropyron spicatum	Bluebunch Wheatgrass	GSC	'Secar'	ldaho (ES)	Triticeae
PSSP-W	Pseudoroegneria spicata ssp. inermis	(Scribn. & J.G. Sm.) A. Löve	Agropyron inerme	Beardless Wheatgrass	GSC	'Whitmar'	Washington (ES)	Triticeae
SCSC	Schizachyrium scoparium*	(Michx.) Nash	Andropogon scoparius*	Little Bluestem*	MM	Elev. 2500 m	Goat Hill Slope (ES)	Andropogon- eae
SPWR	Sporobolus wrightii	Munro ex Scribn.	Sporobolus wrightii	Giant Sacaton	LLPMC	Evaluation Plot	New Mexico (ES)	Eragrostideae

Table 2 (cont.). The abbreviated scientific names, current and traditional scientific names, vernacular names, and seed source information for the species and ecotypes used in the testing of growth and survival in low pH overburden.

* tentative identification

**GSC = Granite Seed Co., WNSC = Western Native Seed Co., MM = Molycorp Mine Collection, LLPMC = Los Lunas, New Mexico Plant Materials Center

		Substrate		<u>.</u>		
	Low pH	High Salinity	Low Salinity	Overall	ANOVA	ANOVA
	Mean <u>+</u> SE	Mean <u>+</u> SE	Mean <u>+</u> SE	Mean	Prob.	SS model/
Abbrev.	Biomass	Biomass	Biomass	Biomass	of	SS total
Sci. Name	(g/plant)	(g/plant)	(g/plant)	(g/plant)	F-test	(r ²)
ACHY-N	1.21 <u>+</u> 0.48	0.28 ± 0.40	0.87 <u>+</u> 0.22	0.78	0.121	0.51
ACLE	0.30 <u>+</u> 0.27	0.11 <u>+</u> 0.16	0.22 ± 0.02	0.21	0.604	0.16
ACMOLY	$0.08 \pm 0.12 b^*$	0.13 <u>+</u> 0.19 b	0.78 <u>+</u> 0.29 a	0.33	0.031	0.69
ACRO	0.67 <u>+</u> 0.27 a	0.00 ± 0.00 b	0.80 <u>+</u> 0.04 a	0.49	0.005	0.83
AGSC	1.20 <u>+</u> 0.75	0.11 <u>+</u> 0.15	0.29 <u>+</u> 0.21	0.53	0.110	0.52
BLTR	1.45 <u>+</u> 0.69	1.26 <u>+</u> 0.97	1.69 <u>+</u> 0.53	1.46	0.847	0.05
BRCI	0.10 <u>+</u> 0.07	0.47 <u>+</u> 0.29	0.54 <u>+</u> 0.22	0.37	0.157	0.46
BRMA	0.04 <u>+</u> 0.05	0.00 ± 0.00	0.13 <u>+</u> 0.18	0.05	0.519	0.20
BRMOLY	0.06 <u>+</u> 0.08 b	0.40 <u>+</u> 0.15 a	0.66 <u>+</u> 0.08 a	0.38	0.004	0.84
CAREX	1.02 <u>+</u> 0.30	0.53 <u>+</u> 0.09	0.67 <u>+</u> 0.22	0.75	0.152	0.47
DAIN	0.80 <u>+</u> 0.10 a	0.48 <u>+</u> 0.16 b	0.87 <u>+</u> 0.11 a	0.72	0.043	0.65
DECA-PC	1.17 <u>+</u> 0.20	1.09 <u>+</u> 0.62	0.77 <u>+</u> 0.15	1.01	0.569	0.17
ELCA	0.72 <u>+</u> 0.24 ab	0.35 <u>+</u> 0.26 b	1.23 <u>+</u> 0.32 a	0.77	0.049	0.63
ELEL-AZ	0.44 <u>+</u> 0.31	0.12 <u>+</u> 0.17	0.79 <u>+</u> 0.21	0.45	0.076	0.58
ELEL-PMC	0.50 <u>+</u> 0.30	0.32 <u>+</u> 0.24	1.27 <u>+</u> 0.42	0.69	0.058	0.61
ELGL	0.12 <u>+</u> 0.09	0.00 ± 0.00	0.35 <u>+</u> 0.35	0.16	0.315	0.32
ELLA-C	0.37 ± 0.07 ab	0.09 <u>+</u> 0.08 b	0.50 <u>+</u> 0.18 a	0.32	0.033	0.68
ELLA-S	0.37 <u>+</u> 0.18	0.27 <u>+</u> 0.06	0.39 <u>+</u> 0.04	0.34	0.544	0.18
ELTR-P	0.54 <u>+</u> 0.29	0.27 <u>+</u> 0.38	1.26 <u>+</u> 0.39	0.69	0.073	0.58
ELTR-R	0.33 <u>+</u> 0.30	0.08 <u>+</u> 0.11	0.72 <u>+</u> 0.21	0.38	0.067	0.60
ELTR-SL	1.21 <u>+</u> 0.72	0.31 <u>+</u> 0.23	1.73 <u>+</u> 0.69	1.08	0.130	0.49
ELVI	0.65 <u>+</u> 0.58	0.32 <u>+</u> 0.26	0.80 <u>+</u> 0.30	0.59	0.531	0.19
FEAR-R	0.77 <u>+</u> 0.40 b	0.41 <u>+</u> 0.15 b	1.96 <u>+</u> 0.68 a	1.05	0.036	0.67
FEID-J	0.22 <u>+</u> 0.20	0.38 <u>+</u> 0.49	0.82 <u>+</u> 0.25	0.47	0.259	0.36
FEMOLY-C	0.67 <u>+</u> 0.27 b	3.04 <u>+</u> 1.15 a	1.78 <u>+</u> 0.38 ab	1.83	0.043	0.65
FEMOLY-SGS	1.12 <u>+</u> 0.44 b	1.13 <u>+</u> 0.64 b	3.09 <u>+</u> 0.47 a	1.78	0.015	0.76
FEMOLY-SGT	0.59 <u>+</u> 0.09 b	1.35 <u>+</u> 0.68 b	3.45 <u>+</u> 1.28 a	1.80	0.033	0.68
FEOV-C	0.61 <u>+</u> 0.38	0.43 <u>+</u> 0.49	1.45 <u>+</u> 0.54	0.83	0.151	0.47

 Table 3. Analysis of variance and means tests of biomass (total dry weight in plot/number of live plants in plot) for native grasses grown in 3 low pH overburden treatments.

* Different lower case letters indicate significant difference among means within entry

		Substrate				
	Low pH	High Salinity	Low Salinity	Overall	ANOVA	ANOVA
	Mean <u>+</u> SE	Mean <u>+</u> SE	Mean <u>+</u> SE	Mean	Prob.	SS model/
Abbrev.	Biomass	Biomass	Biomass	Biomass	of	SS total
Sci. Name	(g/plant)	(g/plant)	(g/plant)	(g/plant)	F-test	(r ²)
FEOV-MX	0.58 <u>+</u> 0.18	1.11 <u>+</u> 0.92	2.48 ± 0.85	1.39	0.094	0.55
FESA	0.15 <u>+</u> 0.07 b*	0.19 <u>+</u> 0.05	b 0.97 <u>+</u> 0.24	u 0.44	0.002	0.87
FETH	0.35 <u>+</u> 0.33 b	0.25 <u>+</u> 0.26	b 1.59 ± 0.54	u 0.73	0.026	0.70
FETR-D	0.67 <u>+</u> 0.35 b	0.13 <u>+</u> 0.13	b 1.41 <u>+</u> 0.22	a 0.81	0.020	0.79
FETR-S	0.92 <u>+</u> 0.30 b	0.75 <u>+</u> 0.35	b 2.17 <u>+</u> 0.57	a 1.28	0.028	0.70
HECO	0.61 <u>+</u> 0.04	0.91 <u>+</u> 0.43	0.85 <u>+</u> 0.14	0.79	0.513	0.20
HENE	0.31 <u>+</u> 0.22 ab	0.00 ± 0.00	b 0.62 <u>+</u> 0.24	a 0.31	0.046	0.64
KOMA	0.45 <u>+</u> 0.22	0.19 <u>+</u> 0.07	0.44 <u>+</u> 0.12	0.36	0.223	0.39
LECI-M	0.23 <u>+</u> 0.15	0.11 <u>+</u> 0.08	0.32 <u>+</u> 0.14	0.22	0.316	0.32
LECI-T	0.26 <u>+</u> 0.10	0.27 ± 0.08	0.42 <u>+</u> 0.02	0.32	0.105	0.53
LETR-SH	0.12 <u>+</u> 0.02 b	0.08 <u>+</u> 0.06	b 0.46 <u>+</u> 0.19	a 0.22	0.035	0.67
MUMO-AUB	1.35 <u>+</u> 0.41	0.97 <u>+</u> 0.28	1.23 <u>+</u> 0.23	1.18	0.516	0.20
MUMO-GHS	1.38 <u>+</u> 0.01	0.72 <u>+</u> 0.24	1.30 ± 0.75	1.11	0.449	0.27
NAVI	0.69 <u>+</u> 0.32 a	0.00 ± 0.00	b 0.53 <u>+</u> 0.14	a 0.41	0.035	0.67
PASM-A	0.68 <u>+</u> 0.36 b	1.30 ± 0.17	b 2.35 <u>+</u> 0.35	a 1.45	0.004	0.83
PASM-B	1.09 <u>+</u> 0.26	0.80 <u>+</u> 0.85	2.21 <u>+</u> 0.49	1.37	0.111	0.52
PASM-R	0.87 <u>+</u> 0.29	0.49 <u>+</u> 0.27	1.53 <u>+</u> 0.41	0.96	0.052	0.63
PHPR	1.08 <u>+</u> 0.71	1.18 <u>+</u> 1.03	1.02 <u>+</u> 0.37	1.10	0.984	0.01
POAL	0.04 <u>+</u> 0.06	0.19 <u>+</u> 0.16	0.20 <u>+</u> 0.10	0.14	0.363	0.29
POCO-R	0.25 <u>+</u> 0.35 b	1.27 <u>+</u> 0.57	ab 2.09 <u>+</u> 0.41	a 1.21	0.019	0.73
POMOLY	0.82 <u>+</u> 0.99	1.74 <u>+</u> 0.52	2.70 <u>+</u> 0.95	1.75	0.163	0.45
PONE	0.25 <u>+</u> 0.21 b	1.12 <u>+</u> 0.19	ab 2.05 ± 0.61	a 1.14	0.011	0.78
PSSP-S	0.69 <u>+</u> 0.22	0.34 ± 0.38	1.01 ± 0.34	0.68	0.188	0.43
PSSP-W	0.11 <u>+</u> 0.16	0.00 <u>+</u> 0.00	1.19 <u>+</u> 0.95	0.44	0.140	0.48
SCSC	0.26 <u>+</u> 0.30	0.00 ± 0.00	0.75 ± 0.85	0.34	0.514	0.23
SPWR	2.14 <u>+</u> 1.17	1.29 <u>+</u> 0.35	1.24 <u>+</u> 0.25	1.56	0.422	0.25
Grand Mean	0.62 <u>+</u> 0.30	0.54 <u>+</u> 0.30	1.17 <u>+</u> 0.36	0.78	0.203	0.50

Table 3 (cont.). Analysis of variance and means tests of biomass (total dry weight in plot/number of live plants in plot) for native grasses grown in 3 low pH overburden treatments.

* Different lower case letters indicate significant difference among means within entry

					<u> </u>	Su	bstra	te						
	Ĺ	.ow	pН		High	n Sa	linity		Low	Sal	linity	Y	— Overall	ANOVA
	Me	ean	<u>+</u> SE		Me	an <u>-</u>	<u>SE</u>		Mea	an <u>-</u>	<u>-</u> SE		Mean	Prob.
Abbrev.	S	urv	ival		Sı	irvi	val		Su	rvi	val		Survival	of
Sci. Name		(%	5)			(%)	Ì			(%))		(%)	Chi Square
ACHY-N	83	+	11*	a**	25	+	13	b	100	<u>+</u>	0	а	69	0.004
ACLE	45	<u>+</u>	15	Ь	9	<u>+</u>	9	с	100	÷	0	а	51	0.009
ACMOLY	25	+	13	b	8	<u>+</u>	8	b	92	<u>+</u>	8	а	42	0.003
ACRO	100	+	0	а	0	<u>+</u>	0	b	100	<u>+</u>	0	а	67	0.006
AGSC	67	<u>+</u>	19		13	<u>+</u>	12		60	<u>+</u>	22		47	0.127
BLTR	92	+	8		83	±	11		73	±	13		83	0.511
BRCI	45	<u>+</u>	15		58	<u>+</u>	14		67	<u>+</u>	14		57	0.592
BRMA	10	<u>+</u>	9		0	÷	0		22	<u>+</u>	14		11	0.526
BRMOLY	25	±	13	b	83	<u>+</u>	11	a	100	±	0	а	69	0.004
CAREX	83	<u>+</u>	11		67	<u>+</u>	14		92	<u>+</u>	8		81	0.326
DAIN	100	+	0		100	<u>+</u>	0		92	<u>+</u>	8		97	0.867
DECA-PC	92	<u>+</u>	8		75	<u>+</u>	13		100	±	0		89	0.315
ELCA	100	<u>+</u>	0	а	33	<u>+</u>	14	b	100	<u>+</u>	0	a	78	0.005
ELEL-AZ	50	<u>+</u>	14	b	25	<u>+</u>	13	b	83	<u>+</u>	11	а	53	0.030
ELEL-PMC	75	<u>+</u>	13	b	25	÷	13	с	100	<u>+</u>	0	a	67	0.007
ELGL	42	<u>+</u>	14		0	÷	0		25	+	13		22	0.173
ELLA-C	92	\pm	8		58	<u>+</u>	14		100	±	0		83	0.070
ELLA-S	100	±	0		92	+	8		100	<u>+</u>	0		97	0.867
ELTR-P	83	Ŧ	11	a	17	+	11	b	100	+	0	a	67	0.002
ELTR-R	67	÷	14	b	17	<u>+</u>	11	с	100	<u>+</u>	0	а	61	0.006
ELTR-SL	100	<u>+</u>	0	а	25	<u>+</u>	13	b	100	<u>+</u>	0	a	75	0.002
ELVI	42	<u>+</u>	14		17	<u>+</u>	11		67	<u>+</u>	14		42	0.065
FEAR-R	100	±	0		100	±	0		100	+	0		. 100	na
FEID-J	92	<u>+</u>	8	а	50	+	14	b	100	±	0	a	81	0.031
FEMOLY-C	83	<u>+</u>	11		75	<u>+</u>	13		100	<u>+</u>	0		86	0.421
FEMOLY-SGS	100	<u>+</u>	0		92	<u>+</u>	8		100	+	0		97	0.867
FEMOLY-SGT	100	÷	0		100	±	0		100	<u>+</u>	0		100	па
FEOV-C	92	<u>+</u>	8		58	<u>+</u>	14		100	<u>+</u>	0		83	0.070

Table 4. Analysis of variance and means tests of survival percentages of native grasses grown in 3 low pH overburden treatments.

* SE = square root(((% survival) x (% mortality))/sample count)

** Different lower case letters indicate significant difference among means within entry

		Substrate			
	Low pH	High Salinity	Low Salinity	Overall	ANOVA
	Mean <u>+</u> SE	Mean <u>+</u> SE	Mean <u>+</u> SE	Mean	Prob.
Abbrev.	Survival	Survival	Survival	Survival	of
Sci. Name	(%)	(%)	(%)	(%)	Chi Square
FEOV-MX	100 ± 0	58 <u>+</u> 14*	100 <u>+</u> 0	86	0.054
FESA	50 <u>+</u> 14	50 <u>+</u> 14	67 <u>+</u> 14	56	0.642
FETH	33 <u>+</u> 19	33 <u>+</u> 19	100 <u>+</u> 0	56	0.137
FETR-D	100 <u>+</u> 0 a**	13 <u>+</u> 12 b	100 <u>+</u> 0 a	71	0.003
FETR-S	100 <u>+</u> 0	75 <u>+</u> 13	100 <u>+</u> 0	92	0.233
HECO	100 <u>+</u> 0 a	50 <u>+</u> 14 b	100 <u>+</u> 0 a	83	0.025
HENE	38 <u>+</u> 17 b	0 <u>+</u> 0 c	100 <u>+</u> 0 a	46	0.023
KOMA	83 <u>+</u> 11	58 <u>+</u> 14	100 <u>+</u> 0	81	0.124
LECI-M	92 <u>+</u> 8 a	50 <u>+</u> 14 b	100 <u>+</u> 0 a	81	0.031
LECI-T	92 <u>+</u> 8	75 <u>+</u> 13	100 <u>+</u> 0	89	0.142
LETR-SH	92 <u>+</u> 8 a	42 <u>+</u> 14 b	100 <u>+</u> 0 a	78	0.013
MUMO-AUB	100 <u>+</u> 0	75 <u>+</u> 13	100 <u>+</u> 0 -	92	0.233
MUMO-GHS	100 <u>+</u> 0	92 <u>+</u> 8	100 [.] <u>+</u> 0	97	0.907
NAVI	67 <u>+</u> 14 b	0 <u>+</u> 0 c	100 <u>+</u> 0 a	56	0.007
PASM-A	92 <u>+</u> 8 a	42 <u>+</u> 14 b	100 <u>+</u> 0 a	78	0.013
PASM-B	100 <u>+</u> 0 a	42 <u>+</u> 14 b	100 <u>+</u> 0 a	81	0.012
PASM-R	100 <u>+</u> 0 a	42 <u>+</u> 14 b	100 <u>+</u> 0 a	81	0.012
PHPR	92 <u>+</u> 8 a	33 <u>+</u> 14 b	75 <u>+</u> 15 a	67	0.023
POAL	17 <u>+</u> 11 b	17 <u>+</u> 11 b	92 <u>+</u> 8 a	42	0.003
POCO-R	33 <u>+</u> 14 b	100 <u>+</u> 0 a	100 <u>+</u> 0 a	78	0.005
POMOLY	58 <u>+</u> 14	75 <u>+</u> 13	100 <u>+</u> 0	78	0.173
PONE	8 3 <u>+</u> 11	100 <u>+</u> 0	100 <u>+</u> 0	94	0.473
PSSP-S	100 <u>+</u> 0 a	33 <u>+</u> 14 b	100 <u>+</u> 0 a	78	0.005
PSSP-W	10 <u>+</u> 9 b	0 <u>+</u> 0 b	55 <u>+</u> 15 a	22	0.036
SCSC	50 <u>+</u> 18	0 <u>+</u> 0	33 <u>+</u> 19	28	0.307
SPWR	83 <u>+</u> 11	100 <u>+</u> 0	100 <u>+</u> 0	94	0.473
Grand Mean	75 <u>+</u> 8	47 <u>+</u> 10	91 <u>+</u> 4	71	0.193

Table 4 (cont.). Analysis of variance and means tests of survival percentages of native grasses grown in 3 low pH overburden treatments.

* SE = square root (((% survival) x (% mortality))/sample count)

** Different lower case letters indicate significant difference among means within entry

					Overall		Sub	strate	
		Overall	Overall	Overall	Average	Low	v pH	High S	alinity
		Mean	Mean	Mean	Combined	Biomass	Survival	Biomass	Survival
	Abbrev.	Biomass	Survival	Rating*	Rank**	Rank	Rank	Rank	Rank
Grass Tribe	Sci. Name	(g)	(%)						
Andropogoneae	SCSC	0.34	28	0.13	45	41	40	48	48
Aveneae	AGSC	0.49	47	0.27	39	6	35	44	45
Aveneae	DECA-PC	1.01	89	0.90	14	7	18	12	12
Aveneae	KOMA	0.36	81	0.29	31	32	28	38	19
Aveneae	PHPR	1.10	67	0.72	26	10	18	8	32
Danthonieae	DAIN	0.72	97	0.70	15	16	1	20	1
Eragrostideae	BLTR	1.46	83	1.22	11	2	18	7	10
Eragrostideae	MUMO-AUB	1.18	92	1.08	11	3	1	13	12
Eragrostideae	MUMO-GHS	1.11	97	0.95	12	12	1	17	7
Eragrostideae	SPWR	1.56	94	1.47	6	1	28	5	1
na	CAREX	0.75	81	0.60	22	11	28	18	18
Poeae	BRCI	0.37	57	0.21	41	50	44	21	19
Poeae	BRMA	0.05	11	0.01	54	54	53	48	48
Poeae	BRMOLY	0.38	69	0.26	37	52	50	24	10
Poeae	FEAR-R	1.05	100	1.04	9	17	1	23	1
Poeae	FEID-J	0.47	81	0.38	27	45	18	25	24
Poeae	FEMOLY-C	1.83	86	1.58	7	24	28	1	12
Poeae	FEMOLY-SGS	1.78	97	1.73	3	8	1	9	7
Poeae	FEMOLY-SGT	1.80	100	1.80	2	28	1	3	1
Poeae	FEOV-C	0.83	83	0.69	18	26	18	22	19
Poeae	FEOV-MX	1.39	86	1.20	11	29	1	11	19
Poeae	FESA	0.44	56	0.24	39	46	41	37	24
Poeae	FETH	0.73	56	0.41	34	36	48	35	32
Poeae	FETR-D	0.81	71	0.64	23	22	1	46	45
Poeae	FETR-S	1.28	92	1.17	10	13	1	16	12
Poeae	POAL	0.14	42	0.06	51	53	52	36	40
Poeae	POCO-R	1.21	78	0.94	19	42	48	6	1
Poeae	POMOLY	1.75	78	1.36	15	15	39	2	12
Poeae	PONE	1.14	94	1.08	10	43	28	10	-1

Table 5. Overall performance and ranking of grass species grown in the low pH substrate and high soluble salts substrate, grouped by grass tribe.

*Overall Mean Rating = Overall Biomass (g) x Overall Survival (%/100)

**Overall Average Combined Rank = (Rank of Overall Biomass + Rank of Overall Survival)/2

		-, ···			Overall		Sub:	strate	
		Overall	Overall	Overall	Average	Lov	vрН	High S	alinity
		Mean	Mean	Mean	Combined	Biomass	Survival	Biomass	Survival
	Abbrev.	Biomass	Survival	Rating*	Rank**	Rank	Rank	Rank	Rank
Grass Tribe	Sci. Name	(g)	(%)						
Stipeae	ACHY-N	0.78	69	0.54	28	5	28	31	36
Stipeae	ACLE	0.21	51	0.11	48	39	44	42	44
Stipeae	ACMOLY	0.33	42	0.14	47	51	50	39	45
Stipeae	ACRO	0.49	67	0.33	34	23	1	48	48
Stipeae	HECO	0.79	83	0.66	19	27	1	14	24
Stipeae	HENE	0.31	46	0.15	48	38	41	48	48
Stipeae	NAVI	0.41	56	0.23	40	19	37	48	48
Triticeae	ELCA	0.77	78	0.60	25	18	1	26	32
Triticeae	ELEL-AZ	0.45	53	0.24	40	33	41	40	36
Triticeae	ELEL-PMC	0.69	67	0.46	32	31	36	29	36
Triticeae	ELGL	0.16	22	0.03	53	47	46	48	48
Triticeae	ELLA-C	0.32	83	0.27	31	34	18	41	19
Triticeae	ELLA-S	0.34	97	0.33	24	35	1	32	7
Triticeae	ELTR-P	0.69	67	0.46	32	30	28	33	40
Triticeae	ELTR-R	0.38	61	0.23	40	37	37	47	40
Triticeae	ELTR-SL	1.08	75	0.81	24	4	1	30	36
Triticeae	ELVI	0.59	42	0.24	40	25	46	28	40
Triticeae	LECI-M	0.22	81	0.17	35	44	18	43	24
Triticeae	LECI-T	0.32	89	0.28	29	40	18	34	12
Triticeae	LETR-SH	0.22	78	0.17	38	48	18	45	28
Triticeae	PASM-A	1.45	78	1.12	17	21	18	4	28
Triticeae	PASM-B	1.37	81	1.10	14	9	1	15	31
Triticeae	PASM-R	0.96	81	0.78	1 9	14	1	19	28
Triticeae	PSSP-S	0.68	78	0.53	28	20	1	27	32
Triticeae	PSSP-W	0.44	22	0.10	44	49	53	48	48

Table 5 (cont.). Overall performance and ranking of grass species grown in the low pH substrate and high soluble salts substrate, grouped by grass tribe.

*Overall Mean Rating = Overall Biomass (g) x Overall Survival (%/100)

**Overall Average Combined Rank = (Rank of Overall Biomass + Rank of Overall Survival)/2